Indian Statistical Institute, Bangalore Centre

B.Math(Hons.) I Year, First Semester Mid-Sem Examination Analysis I September 23, 2011 Instructor: C.R.E.Raja

Time: 3 Hours

Total Marks: 40

- Answer any five questions, each question is worth 8 marks :
 - Let (a_n) and (b_n) be sequences converging to a and b respectively. Prove that
 (i) a_n + b_n → a + b and ra_n → ra for any r ∈ ℝ,
 (ii) (a_n) is a bounded sequence.
 - 2. Let (x_n) and (y_n) be bounded sequences. Prove that $\underline{\lim}(-x_n) = -\overline{\lim}x_n$ and

 $\underline{\lim} x_n + \underline{\lim} y_n \leq \underline{\lim} (x_n + y_n) \leq \overline{\lim} x_n + \underline{\lim} y_n \leq \overline{\lim} (x_n + y_n) \leq \overline{\lim} x_n + \overline{\lim} y_n.$

- 3. (i) If (a_n) is a sequence and r is a limit point of (a_n) , then show that there is a subsequence (a_{k_n}) of (a_n) such that $a_{k_n} \to r$.
 - (ii) If (a_n) is defined by

$$a_1 = 0, \quad a_{2m} = \frac{a_{2m-1}}{2}, \quad a_{2m+1} = \frac{1}{2} + a_{2m}$$

for any $m \ge 1$. Find $\liminf a_n$ and $\limsup a_n$.

- 4. (i) Prove that $\lim_{n \to \infty} n^{\frac{1}{n}} = \lim_{n \to \infty} (n-1)^{\frac{1}{n}} = 1.$
 - (ii) Prove that every Cauchy sequence converges.
- 5. (i) If |a_n| ≤ c_n for all n and ∑ c_n converges, prove that ∑ a_n also converges.
 (ii) Let (a_i) be a decreasing sequence of non-negative numbers. Then prove that ∑[∞]_{n=1} a_n converges if and only if ∑[∞]_{n=0} 2^ka_{2^k} converges.
- 6. (i) If the sequence of partial sums of $\sum a_n$ is bounded and (b_n) is a decreasing or increasing sequence converging to zero, prove that $\sum a_n b_n$ converges.

(ii) If $\sum a_n$ converges and (b_n) is a bounded monotonic sequence, prove that $\sum a_n b_n$ converges.

7. (i) Find the radius of convergence of the following series

$$\frac{1}{3} + \frac{1}{5}z + \frac{1}{3^2}z^2 + \frac{1}{5^2}z^3 + \frac{1}{3^3}z^4 + \frac{1}{5^3}z^5 + \cdots$$

(ii) Let (a_n) be a sequence. Define $p_n = |a_n| + a_n$ and $q_n = |a_n| - a_n$. Prove that

- (a) $\sum p_n$ and $\sum q_n$ converge if and only if $\sum a_n$ converges absolutely;
- (b) if $\sum a_n$ and $\sum p_n$ converge, then $\sum a_n$ converges absolutely.